Module: AA.operational
Generates operational outputs for a given country, issue month, and indicator.
Usage
Pixi
pixi run python -m AA.operational <ISO> <ISSUE_MONTH> <SPI/DRYSPELL>
Docker
docker run --rm \
-e AWS_ACCESS_KEY_ID=${AWS_ACCESS_KEY_ID} \
-e AWS_SECRET_ACCESS_KEY=${AWS_SECRET_ACCESS_KEY} \
-e AWS_SESSION_TOKEN=${AWS_SESSION_TOKEN} \
aa-runner:latest \
python -m AA.operational <ISO> <ISSUE_MONTH> <SPI/DRYSPELL> \
--data-path <DATA_PATH> --output-path <OUTPUT_PATH>
Arguments
<ISO>: 3-letter ISO code.<ISSUE_MONTH>: Issue month (e.g.,2025-02).<SPI/DRYSPELL>: Indicator family.
Inputs & Outputs
- Uses outputs from Analytical and/or Triggers stages.
- Writes operational products to configured output directory.
See Configuration and Environments for paths and credentials.
run_aa_probabilities(forecasts, observations, params, period_months)
Compute probabilities based on recent forecasts for operational routine
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
forecasts
|
xarray.Dataset, rainfall forecasts dataset |
required | |
observations
|
xarray.Dataset, rainfall observations dataset |
required | |
params
|
Params, parameters class |
required | |
period_months
|
tuple, months of index period (eg (10, 11)) |
required |
Returns: probabilities: xarray.Dataset, raw probabilities for specified period probabilities_bc: xarray.Dataset, bias-corrected probabilities for specified period
run_full_index_pipeline(forecasts, observations, params, triggers, area, period_name, period_months)
Run operational pipeline for single index (period)
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
forecasts
|
xarray.Dataset, rainfall forecasts dataset |
required | |
observations
|
xarray.Dataset, rainfall observations dataset |
required | |
params
|
Params, parameters class |
required | |
triggers
|
pd.DataFrame, selected triggers (output of triggers.py) |
required | |
area
|
hip.analysis.AnalysisArea object with aoi information |
required | |
period_name
|
str, name of index period (eg "ON") |
required | |
period_months
|
tuple, months of index period (eg (10, 11)) |
required |
Returns: probs_df: pandas.DataFrame, probabilities (bc or not depending on analytical output) for all districts merged_df: xarray.Dataset, probabilities merged with selected triggers