Skip to content

Module: AA.operational

Generates operational outputs for a given country, issue month, and indicator.

Usage

Pixi

pixi run python -m AA.operational <ISO> <ISSUE_MONTH> <SPI/DRYSPELL>

Docker

docker run --rm \
  -e AWS_ACCESS_KEY_ID=${AWS_ACCESS_KEY_ID} \
  -e AWS_SECRET_ACCESS_KEY=${AWS_SECRET_ACCESS_KEY} \
  -e AWS_SESSION_TOKEN=${AWS_SESSION_TOKEN} \
  aa-runner:latest \
  python -m AA.operational <ISO> <ISSUE_MONTH> <SPI/DRYSPELL> \
  --data-path <DATA_PATH> --output-path <OUTPUT_PATH>

Arguments

  • <ISO>: 3-letter ISO code.
  • <ISSUE_MONTH>: Issue month (e.g., 2025-02).
  • <SPI/DRYSPELL>: Indicator family.

Inputs & Outputs

  • Uses outputs from Analytical and/or Triggers stages.
  • Writes operational products to configured output directory.

See Configuration and Environments for paths and credentials.

run_aa_probabilities(forecasts, observations, params, period_months)

Compute probabilities based on recent forecasts for operational routine

Parameters:

Name Type Description Default
forecasts

xarray.Dataset, rainfall forecasts dataset

required
observations

xarray.Dataset, rainfall observations dataset

required
params

Params, parameters class

required
period_months

tuple, months of index period (eg (10, 11))

required

Returns: probabilities: xarray.Dataset, raw probabilities for specified period probabilities_bc: xarray.Dataset, bias-corrected probabilities for specified period

run_full_index_pipeline(forecasts, observations, params, triggers, area, period_name, period_months)

Run operational pipeline for single index (period)

Parameters:

Name Type Description Default
forecasts

xarray.Dataset, rainfall forecasts dataset

required
observations

xarray.Dataset, rainfall observations dataset

required
params

Params, parameters class

required
triggers

pd.DataFrame, selected triggers (output of triggers.py)

required
area

hip.analysis.AnalysisArea object with aoi information

required
period_name

str, name of index period (eg "ON")

required
period_months

tuple, months of index period (eg (10, 11))

required

Returns: probs_df: pandas.DataFrame, probabilities (bc or not depending on analytical output) for all districts merged_df: xarray.Dataset, probabilities merged with selected triggers