Module: AA.analytical
Runs the analytical stage for a given country (<ISO>) and indicator (SPI or DRYSPELL).
Usage
Pixi
pixi run python -m AA.analytical <ISO> <SPI/DRYSPELL>
Docker
docker run --rm \
-e AWS_ACCESS_KEY_ID=${AWS_ACCESS_KEY_ID} \
-e AWS_SECRET_ACCESS_KEY=${AWS_SECRET_ACCESS_KEY} \
-e AWS_SESSION_TOKEN=${AWS_SESSION_TOKEN} \
aa-runner:latest \
python -m AA.analytical <ISO> <SPI/DRYSPELL> \
--data-path <DATA_PATH> --output-path <OUTPUT_PATH>
Arguments
<ISO>: 3-letter ISO code (e.g.,KEN,ZMB).<SPI/DRYSPELL>: Which analytical track to run.
Configuration
Reads from config/{iso}_config.yml. See Configuration.
Notes
- Make sure HDC credentials are configured. See HDC Credentials.
- Data paths can be overridden via
--data-pathand--output-pathin Docker.
calculate_forecast_probabilities(forecasts, observations, params, period_months, issue)
Calculate probabilities with and without bias correction, and extract numerical and categorical observations
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
forecasts
|
xarray.Dataset, rainfall forecasts dataset for specific issue month |
required | |
observations
|
xarray.Dataset, rainfall observations dataset |
required | |
params
|
Params, parameters class |
required | |
period_months
|
tuple, months of index period (eg (10, 11)) |
required | |
issue
|
str, issue month of forecasts to analyse |
required |
Returns: probabilities: xarray.Dataset, raw probabilities at the pixel level for specified period and issue month probabilities_bc: xarray.Dataset, bias-corrected probabilities at the pixel level for specified period and issue month anomaly_obs: xarray.Dataset, numerical observations at the pixel level for specified period levels_obs: xarray.Dataset, categorical observations at the pixel level for specified index
run_issue_verification(forecasts, observations, issue, params, area)
Run analytical / verification pipeline for one issue month
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
observations
|
xarray.Dataset, rainfall observations dataset |
required | |
issue
|
str, issue month of forecasts to analyse |
required | |
params
|
Params, parameters class |
required | |
area
|
hip.analysis.AnalysisArea object with aoi information |
required |
Returns: fbf_issue: pandas.DataFrame, dataframe with roc scores for all indexes, districts, categories and a specified issue month
verify_index_across_districts(forecasts, observations, params, area, period_name, period_months, issue)
Run analytical / verification pipeline for a single issue month and a single index (period)
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
forecasts
|
xarray.Dataset, rainfall forecasts dataset for specific issue month |
required | |
observations
|
xarray.Dataset, rainfall observations dataset |
required | |
params
|
Params, parameters class |
required | |
area
|
hip.analysis.AnalysisArea object with aoi information |
required | |
period_name
|
str, name of index period (eg "ON") |
required | |
period_months
|
tuple, months of index period (eg (10, 11)) |
required |
Returns: fbf_issue_df: pandas.DataFrame, dataframe with roc scores for all districts, categories and specified issue month / period